FLIGHT TRAINING (AEROPLANE) BASED ON JAR FCL - PPL(A)

THEORETICAL KNOWLEDGE Syllabus

for

MARSPOLAR - DUBAI, UAE

AIRCRAFT GENERAL KNOWLEDGE

Airframe

- 1 Airframe structure
 - -components
 - -fuselage, wings, tailplane, fin
 - -primary flying controls
 - -trim and flap/slat systems
 - -landing gear
 - -nose wheel, including steering
 - -tyres, condition
 - -braking systems and precautions in use
 - -retraction systems
- 2 Airframe loads
 - -static strength
 - -safety factor
 - -control locks and use
 - -ground/flight precautions

Powerplant

- 3 Engines general
 - -principles of the four stroke internal combustion engine
 - -basic construction
 - -causes of pre-ignition and detonation
 - -power output as a function of RPM
- 4 Engine cooling
 - –air cooling
 - -cowling design and cylinder baffles
 - -design and use of cowl flaps
 - -cylinder head temperature gauge
- 5 Engine lubrication
 - -function and methods of lubrication
 - -lubrication systems
 - -methods of oil circulation
 - -oil pump and filter requirements
 - -qualities and grades of oil
 - -oil temperature and pressure control
 - -oil cooling methods
 - -recognition of oil system malfunctions
- 6 Ignition systems
 - -principles of magneto ignition
 - -construction and function
 - -purpose and principle of impulse coupling
 - -serviceability checks, recognition of malfunctions
 - -operational procedures to avoid spark plug fouling

- 7 Carburation
 - -principles of float type carburettor
 - -construction and function
 - -methods to maintain correct mixture ratio
 - -operation of metering jets and accelerator pump
 - -effect of altitude
 - -manual mixture control
 - maintenance of correct mixture ratio
 - limitation on use at high power
 - avoidance of detonation
 - -idle cut-off valve
 - -operation and use of primary controls
 - -air induction system
 - -alternate induction systems
 - -carburettor icing, use of hot air
 - -injection systems, principles and operation
- 8 Aero engine fuel
 - -classification of fuels
 - -grades and identification by colour
 - -quality requirements
 - -inspection for contamination
 - -use of fuel strainers and drains
- 9 Fuel systems
 - -fuel tanks and supply lines
 - venting system
 - -mechanical and electrical pumps
 - -gravity feed
 - -tank selection
 - -system management

10 Propellers

- -propeller nomenclature
- -conversion of engine power to thrust
- -design and construction of fixed pitch propeller
- -forces acting on propeller blade
- -variation of RPM with change of airspeed
- -thrust efficiency with change of speed
- -design and construction of variable pitch propeller
- -constant speed unit operation
- -effect of blade pitch changes
- -windmilling effect

11 Engine handling

- -starting procedures and precautions
- -recognition of malfunctions
- -warming up, power and system checks
- -oil temperature and pressure limitations
- -cylinder head temperature limitations
- -ignition and other system checks
- -power limitations
- -avoidance of rapid power changes
- -use of mixture control

Systems 1 4 1

12 Electrical system

- -installation and operation of alternators/generators
- -direct current supply
- -batteries, capacity and charging
- -voltmeters and ammeters
- -circuit breakers and fuses
- -electrically operated services and instruments
- -recognition of malfunctions
- -procedure in the event of malfunctions
- 13 Vacuum system
 - -components
 - –pumps
 - -regulator and gauge
 - -filter system
 - -recognition of malfunction
 - -procedures in the event of malfunctions

Instruments

- 14 Pitot/static system
 - -pitot tube, function
 - -pitot tube, principles and construction
 - -static source
 - -alternate static source
 - -position error
 - -system drains
 - -heating element
 - -errors caused by blockage or leakage
- 15 Airspeed indicator
 - -principles of operation and construction
 - -relationship between pitot and static pressure
 - -definitions of indicated, calibrated and true airspeed
 - -instrument errors
 - -airspeed indications, colour coding
 - -pilot's serviceability checks
- 16 Altimeter
 - -principles of operation and construction
 - -function of the sub-scale
 - -effects of atmospheric density
 - -pressure altitude
 - -true altitude
 - -international standard atmosphere
 - -flight level
 - -presentation (three needle)
 - -instrument errors
 - -pilot's service ability checks
- 17 Vertical speed indicator
 - -principles of operation and construction
 - -function
 - -inherent lag
 - -instantaneous VSI
 - -presentation
 - -pilot's serviceability checks

- 18 Gyroscopes
 - -principles
 - -rigidity
 - -precession
- 19 Turn indicator
 - -rate gyro
 - -purpose and function
 - -effect of speed
 - -presentation
 - -turn co-ordinator
 - -limited rate of turn indications
 - -power source
 - -balance indicator
 - principle
 - presentation
 - -pilot's serviceability checks
- 20 Attitude indicator
 - -earth gyro
 - -purpose and function
 - -presentations
 - -interpretation
 - -operating limitations
 - -power source
 - -pilot's serviceability checks
- 21 Heading indicator
 - -directional gyro
 - -purpose and function
 - -presentation
 - -use with magnetic compass
 - -setting mechanism
 - -apparent drift
 - -operating limitations
 - -power source
 - -pilot's serviceability checks
- 22 Magnetic compass
 - -construction and function
 - -earth's magnetic field
 - -variation and deviation
 - -turning, acceleration errors
 - -precautions when carrying magnetic items
 - -pilot's service ability checks
- 23 Engine instruments
 - -principles, presentation and operational use of:
 - -oil temperature gauge
 - -oil pressure gauge
 - -cylinder head temperature gauge
 - -exhaust gas meter
 - -manifold pressure gauge
 - -fuel pressure gauge

- -fuel flow gauge -fuel quantity gauge(s) -tachometer
- 24 Other instruments

-principles, presentation and operational use of:

- -vacuum gauge
- -voltmeter and ammeter
- warning indicators
- -others relevant to aeroplane type
- features, unique or special features)
- features subject to change (e.g. water)
- -preparation
- -folding the map for use
- -methods of map reading
- -map orientation
- –checkpoint features
- -anticipation of checkpoints
 - with continuous visual contact
 - without continuous visual contact
 - when uncertain of position
- -aeronautical symbols
- -aeronautical information
- -conversion of units
- 25 Principles of navigation
 - –IAS, CAS and TAS
 - -track, true and magnetic
 - -wind velocity, heading and groundspeed
 - -triangle of velocities
 - -calculation of heading and groundspeed
 - -drift, wind correction angle
 - -ETA
 - -dead reckoning, position, fix
- 26 The navigation computer
 - -use of the circular slide rule to determine
 - -TAS, time and distance
 - -conversion of units
 - -fuel required
 - -pressure, density and true altitude
 - -time en-route and ETA
 - -use of the computer to solve triangle of velocities
 - -application of TAS and wind velocity to track
 - -determination of heading and ground speed
 - -drift and wind correction angle
- 27 Time
 - relationship between universal co-ordinated (standard) (UTC) time and local mean time (LMT)

-definition of sunrise and sunset times

28 Flight planning -selection of charts

- -route and aerodrome weather forecasts and reports
- -assessing the weather situation
- -plotting the route
- -considerations of controlled/regulated airspace, airspace restrictions, danger areas, etc.
- -use of AIP and NOTAMS
- -ATC liaison procedures in controlled/regulated airspace
- -fuel considerations
- -en-route safety altitude(s)
- -alternate aerodromes
- -communications and radio/navaid frequencies
- -compilation of flight log
- -compilation of ATC flight plan
- -selection of check points, time and distance marks
- -mass and balance calculations
- -mass and performance calculations
- 29 Practical navigation
 - -compass headings, use of deviation card
 - -organisation of in-flight workload
 - -departure procedure, log entries, altimeter setting and establishing IAS
 - -maintenance of heading and altitude
 - -use of visual observations
 - -establishing position, checkpoints
 - -revisions to heading and ETA
 - -arrival procedures, ATC liaison
 - -completion of flight log and aeroplane log entries

Radio navigation

- 30 Ground D/F
 - application
 - -principles
 - -presentation and interpretation
 - -coverage
 - -errors and accuracy
 - -factors affecting range and accuracy
- 31 ADF, including associated beacons (NDBs) and use of the RMI
 - -application
 - -principles
 - -presentation and interpretation
 - -coverage
 - -errors and accuracy
 - -factors affecting range and accuracy
- 32 VOR/DME
 - -application
 - -principles
 - -presentation and interpretation
 - -coverage
 - -errors and accuracy
 - -factors affecting range and accuracy
- 33 GPS
 - -application
 - -principles
 - -presentation and interpretation
 - -coverage

- -errors and accuracy
- -factors affecting reliability and accuracy
- 34 Ground radar
 - application
 - -principles
 - -presentation and interpretation
 - -coverage
 - -errors and accuracy
 - -factors affecting reliability and accuracy
- 35 Secondary surveillance radar
 - –principles (transponders)
 - -application
 - -presentation and interpretation
 - -modes and codes

OPERATIONAL PROCEDURES

- 36 ICAO Annex 6, Part II Operation of aircraft
 - -foreword
 - -definitions
 - -general statement
 - -flight preparation and in-flight procedures
 - -performance and operating limitations
 - -instruments and equipment
 - -communications and navigation equipment
 - -maintenance
 - -flight crew
 - -lights to be displayed
- 37 ICAO Annex 12 Search and rescue
 - -definitions
 - -alerting phases
 - -procedures for pilot-in-command (para 5.8 and 5.9)
 - -search and rescue signals (para 5.9 and Appendix A)
- 38 ICAO Annex 13 Aircraft accident investigation
 –definitions
 –national procedures
- 39 Noise abatement
 –general procedures
 –application to take-off and landing
- 40 Contravention of aviation regulations –offences –penalties

PRINCIPLES OF FLIGHT

41 The atmosphere -composition and structure -ICAO standard atmosphere -atmospheric pressure

- 42 Airflow around a body, sub-sonic
 - -air resistance and air density
 - -boundary layer
 - -friction forces
 - -laminar and turbulent flow
 - -Bernoulli's principle venturi effect
- 43 Airflow about a two dimensional aerofoil
 - -airflow around a flat plate
 - -airflow around a curved plate (aerofoil)
 - -description of aerofoil cross section
 - –lift and drag
 - -C and Cd and their relationship to angle of attack

44 Three dimensional flow about an aerofoil

- -aerofoil shapes and wing planforms
- -induced drag
 - –downwash angle, vortex drag, ground effect
 –aspect ratio
- -parasite (profile) drag
- -form, skin friction and interference drag -lift/drag ratio
- 45 Distribution of the four forces
 - -balance and couples
 - -lift and mass
 - -thrust and drag
 - -methods of achieving balance

46 Flying controls

- -the three planes
 - -pitching about the lateral axis
 - -rolling about the longitudinal axis
 - -yawing about the normal axis
 - -effects of the elevators (stabilators), ailerons and rudder
 - -control in pitch, roll and yaw
 - -cross coupling, roll and yaw
 - -mass and aerodynamic balance of control surfaces
- 47 Trimming controls
 -basic trim tab, balance tab and anti-balance tab
 -purpose and function
 -method of operation

48 Flaps and slats

- -simple, split, slotted and Fowler flaps
- -purpose and function
- -operational use
- -slats, leading edge
- -purpose and function
- -normal/automatic operation

49 The stall

- -stalling angle of attack
- -disruption of smooth airflow
- -reduction of lift, increase of drag

- -movement of centre of pressure
- -symptoms of development
- -aeroplane characteristics at the stall
- -factors affecting stall speed and aeroplane behaviour at the stall
- -stalling from level, climbing, descending and turning flight
- -inherent and artificial stall warnings
- -recovery from the stall

50 Avoidance of spins

- wing tip stall
- -the development of roll
- -recognition at the incipient stage
- -immediate and positive stall recovery
- 51 Stability
 - -definitions of static and dynamic stability
 - -longitudinal stability
 - -centre of gravity effect on control in pitch
 - -lateral and directional stability
 - -interrelationship, lateral and directional stability

52 Load factor and manoeuvres

- -structural considerations
- -manoeuvring and gust envelope
- -limiting load factors, with and without flaps
- -changes in load factor in turns and pull-ups
- -manoeuvring speed limitations
- -in-flight precautions
- 53 Stress loads on the ground -side loads on the landing gear -landing
 - -taxying, precautions during turns

COMMUNICATIONS

- 54 Radio telephony and communications
 - -use of AIP and frequency selection
 - -microphone technique
 - -phonetic alphabet
 - -station/aeroplane callsigns/abbreviations
 - -transmission technique
 - -use of standard words and phrases
 - -listening out
 - -required 'readback' instructions
- 55 Departure procedures
 - –radio checks
 - -taxi instructions
 - -holding on ground
 - -departure clearance

56 En-route procedures

- -frequency changing
 - -position, altitude/flight level reporting
 - -flight information service

- -weather information
- -weather reporting
- -procedures to obtain bearings, headings, position
- -procedural phraseology
- -height/range coverage
- 57 Arrival and traffic pattern procedures
 - -arrival clearance
 - -calls and ATC instructions during the:
 - -circuit
 - -approach and landing
 - –vacating runway
- 58 Communications failure -Action to be taken -alternate frequency -serviceability check, including microphone and headphones -in-flight procedures according to type of airspace
- 59 Distress and urgency procedures
 - -distress (Mayday), definition and when to use
 - -frequencies to use
 - -contents of Mayday message
 - -urgency (Pan), definition and when to use
 - -frequencies to use
 - -relay of messages
 - -maintenance of silence when distress/urgency calls heard
 - -cancellation of distress/urgency

General flight safety

60 Aeroplane

- -seat adjustment and security
- -harnesses and seat belts
- -emergency equipment and its use
 - -fire extinguisher
 - -engine/cabin fires
 - -de-icing systems
 - -survival equipment, life jackets, life rafts
- -carbon monoxide poisoning
- -refuelling precautions
- -flammable goods/pressurised containers
- 61 Operational
 - -wake turbulence
 - -aquaplaning
 - -windshear, take-off, approach and landing
 - -passenger briefings
 - -emergency exits
 - -evacuation from the aeroplane
 - -forced landings
 - -gear-up landing
 - –ditching